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概要 本文書では、代数閉体が可換環全体のなす圏のなかで純粋に圏論的な条件によって特徴づけられ

るという事実とその証明について解説します。 証明において見るように、この条件は Hilbert の弱零点

定理と関係しており、弱零点定理の主張の圏論的な解釈ともみなせます。
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はじめに

 0.1 Outline  1 節 の目標は、本文書のメインとなる代数閉体の特徴づけの主張を述べることと、そのた

めに必要な概念を紹介することです。 2 節 では主張の証明を行います。 3 節 では本文書の内容の文脈につい

て補足的な説明をします。

 0.2 記号

(1) 圏 𝖢 が small であるとは、𝖢 の対象全体と 𝖢 の射全体がそれぞれ集合をなすことをいう。

(2) 圏 𝖢 が余完備であるとは、任意の small な圏 𝖩 と関手 𝐹 : 𝖩 → 𝖢 に対して、𝖢 において 𝐹  の余極限が

存在することをいう。

(3) 圏 𝖢 と対象 𝑋, 𝑌 ∈ 𝖢 に対して、𝖧𝗈𝗆𝖢(𝑋, 𝑌 ) を 𝑋 から 𝑌  への 𝖢 の射全体のなす集合とする。

(4) 圏 𝖢 と対象 𝑋 ∈ 𝖢 に対して、𝖢𝑋/ を余スライス圏 (coslice category) とする。 𝑋/ 𝖢 と書かれること

もある。

(5) 𝖢𝖱𝗂𝗇𝗀 を可換環全体のなす圏とする。

(6) 可換環 𝐴 に対して、𝖢𝖠𝗅𝗀𝐴 を可換 𝐴 代数全体のなす圏とする。 このとき、圏同値 𝖢𝖠𝗅𝗀𝐴 ≃

𝖢𝖱𝗂𝗇𝗀𝐴/ が存在することを思い出しておく（右辺の余スライス圏として左辺を定義してもよい）。 以

下、単に 𝐴 代数といったら可換であるとする。

1 主張

 1.1 Outline  この節では、本文書のメインである代数閉体の圏論的特徴づけの主張を述べます

（Theorem 1.8）。 用語の説明抜きに言えば、代数閉体は可換環の圏 𝖢𝖱𝗂𝗇𝗀 における Nullstellensatzian 

object（Definition 1.6）として特徴づけられる、というのが今回紹介する主張です。 この 

Nullstellensatzian object の定義の条件が純粋に圏論的な条件であるというわけです。

Nullstellensatzian object の定義を述べるために、圏における compact object という概念が必要になる

ため、これについて初めに軽く説明します。
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⬩  Definition 1.2     filtered category

圏 𝖩 が filtered category であるとは、𝖩 が次の 3 条件をみたすことをいう。

(1) 𝖩 は空でない。

(2) 𝑖1, 𝑖2 ∈ 𝖩 なら、ある対象 𝑗 ∈ 𝖩 と 2 つの射 𝑖1 → 𝑗 と 𝑖2 → 𝑗 が存在する。

(3) 𝖩 の 2 つの射 𝑓, 𝑔 : 𝑖 → 𝑗 に対し、ある射 ℎ : 𝑗 → 𝑘 が存在して、ℎ ∘ 𝑓 = ℎ ∘ 𝑔 が成り立つ。

⬢  Example 1.3     filtered category の例

𝑃  を空でない前順序集合 (preordered set) とする。 𝑃  が 有向集合 であるとは、任意の 𝑎, 𝑏 ∈ 𝑃  に対

して、ある 𝑐 ∈ 𝑃  が存在して 𝑎 ≤ 𝑐 かつ 𝑏 ≤ 𝑐 が成り立つことをいう。 𝑃  が有向集合であるとき、𝑃  を

その順序によって圏とみなせば、𝑃  は filtered category である。

⬩  Definition 1.4     compact object

𝖢 を余完備な圏とする。 対象 𝑋 ∈ 𝖢 が compact であるとは、任意の small な filtered category 𝖩 

と任意の関手 𝑌 : 𝖩 → 𝖢 に対して、colimit の普遍性から定まる次の canonical な写像が全単射である

ことをいう :

colim
𝑖 ∈ 𝖩

𝖧𝗈𝗆𝖢(𝑋, 𝑌 (𝑖)) → 𝖧𝗈𝗆𝖢(𝑋, colim
𝑖 ∈ 𝖩

𝑌 (𝑖)).

compact object の概念は、大まかにいえば圏の対象の “有限性” の定式化のひとつです。 次で紹介する 

compact object の例は、その気持ちを裏付ける根拠になっていると思えます。 各々の圏における filtered 

colimit の表示を用いれば証明は難しくありませんが、長くなってしまうためここでは省略します。

⬢  Example 1.5     compact object の例

(1) 集合の圏 𝖲𝖾𝗍 を考えると、

𝑋 ∈ 𝖲𝖾𝗍 が compact ⇔ 𝑋 が有限集合。

(2) 群の圏 𝖦𝗋𝗉 を考えると、

𝐺 ∈ 𝖦𝗋𝗉 が compact ⇔ 𝐺 が有限表示群。

ここで、群 𝐺 が有限表示であるとは、𝐺 が有限個の生成元と有限個の関係式により表示されるこ

とをいう。

(3) 𝑅 を環とし、左加群の圏 𝖫𝖬𝗈𝖽𝑅  を考えると、

𝑀 ∈ 𝖫𝖬𝗈𝖽𝑅  が compact ⇔ 𝑀  が有限表示加群。

ここで、左 𝑅 加群 𝑀  が有限表示であるとは、ある整数 𝑛 ≥ 1 と有限生成な部分 𝑅 加群 𝑁 ⊆ 𝑅𝑛 

が存在して、𝑀  が剰余加群 𝑅𝑛/𝑁  と同型になることをいう。 この主張は右加群の圏 𝖱𝖬𝗈𝖽𝑅  で

も同様に成り立つ。

(4) 𝐴 を可換環とし、𝐴 代数の圏 𝖢𝖠𝗅𝗀𝐴 を考えると、

𝑅 ∈ 𝖢𝖠𝗅𝗀𝐴 が compact ⇔ 𝑅 が有限表示 𝐴 代数。

ここで、𝐴 代数 𝑅 が有限表示であるとは、ある整数 𝑛 ≥ 1 と有限生成イデアル 𝐼 ⊆ 𝐴[𝑥1, …, 𝑥𝑛] 

が存在して、𝑅 が剰余環 𝐴[𝑥1, …, 𝑥𝑛]/𝐼  と同型になることをいう。

冒頭で紹介した Nullstellensatzian object の定義を述べます。 定義の条件が純粋に圏論的なものであること

に注目してください。
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⬩  Definition 1.6     Nullstellensatzian object ; [BSY22, Definition 1.1]

𝖢 を終対象をもつ余完備な圏とする1。

(1) 𝖢 が Nullstellensatzian であるとは、𝖢 の終対象でない任意の compact object が始対象への射

をもつことをいう。

(2) 𝖢 の対象 𝐴 ∈ 𝖢 が Nullstellensatzian であるとは、𝐴 が 𝖢 の終対象でなく、かつ余スライス圏 

𝖢𝐴/ が (1) の意味で Nullstellensatzian であることをいう。

Remark 1.7     名前の由来

“Nullstellensatzian” と呼ぶ理由は 2 節 で証明する Proposition 2.6 に由来する。

さて、以上の準備のもとで、本文書のメインとなる主張を述べることができます。

◾︎  Theorem 1.8     代数閉体の圏論的特徴づけ

𝐴 を可換環とする。 このとき、次の 2 条件は同値である。

(1) 𝐴 は代数閉体である。

(2) 𝐴 は可換環の圏 𝖢𝖱𝗂𝗇𝗀 の対象として Nullstellensatzian である。

2 証明

 2.1 Outline  この節では、Theorem 1.8 の証明を行います。 キーとなるのは、Hilbert の弱零点定理で

す。 弱零点定理は代数閉体に対して成り立つ定理ですが、実は逆に弱零点定理の主張をみたす可換環

（Definition 2.3）は代数閉体であることが簡単にわかります。 すなわち、可換環に対して、

代数閉体である ⇔ 弱零点定理をみたす

となります（Theorem 2.4）。 よって、あとは弱零点定理をみたすという（a priori には環論的な）条件が、

𝖢𝖱𝗂𝗇𝗀 の対象として Nullstellensatzian であるという圏論的条件と等価になることを示せばよく、これは 

Example 1.5 (4) と簡単な観察（Observation 2.5）からただちに従います（Proposition 2.6）。 これが証明

の流れです。

ここでの Hilbert の弱零点定理は、次の主張を指します。

◾︎  Theorem 2.2     Hilibert’s weak Nullstellensatz

𝑘 を代数閉体とする。 このとき、任意の整数 𝑚, 𝑛 ≥ 1 と任意の多項式 𝑓1, …, 𝑓𝑚 ∈ 𝑘[𝑥1, …, 𝑥𝑛] に対

し、(𝑓1, …, 𝑓𝑚) ≠ (1) なら、ある (𝑎1, …, 𝑎𝑛) ∈ 𝑘𝑛 が存在して、𝑘 において

𝑓1(𝑎1, …, 𝑎𝑛) = ⋯ = 𝑓𝑚(𝑎1, …, 𝑎𝑛) = 0

が成り立つ。

この主張を定式化することで、一般の可換環に対して次のような条件を考えることができます。

⬩  Definition 2.3     弱零点定理をみたす可換環

1[BSY22, Definition 1.1] では presentable (∞-)category に対して Nullstellensatzian object の概念を定義しているが、
本文書の目的においては presentability を仮定する必要はないため、述べるのが簡単な仮定を採用した。 余完備性は filtered 
colimit を持つことと置き換えてもよい。
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𝐴 を可換環とする。 このとき、𝐴 が 弱零点定理をみたす とは、𝐴 に対して Theorem 2.2 の主張が成

り立つことをいう。 すなわち、任意の整数 𝑚, 𝑛 ≥ 1 と任意の多項式 𝑓1, …, 𝑓𝑚 ∈ 𝐴[𝑥1, …, 𝑥𝑛] に対

し、(𝑓1, …, 𝑓𝑚) ≠ (1) なら、ある (𝑎1, …, 𝑎𝑛) ∈ 𝐴𝑛 が存在して、𝐴 において

𝑓1(𝑎1, …, 𝑎𝑛) = ⋯ = 𝑓𝑚(𝑎1, …, 𝑎𝑛) = 0

が成り立つ。

この条件が代数閉体を特徴づけていることが通常の Hilbert の弱零点定理からただちにわかります。

◾︎  Theorem 2.4     Hilbert’s weak Nullstellensatz (another form)

可換環 𝐴 に対して、次の 2 条件は同値である。

(1) 𝐴 は代数閉体である。

(2) 𝐴 は弱零点定理をみたす。

proof ) (1) ⇒ (2) : 通常の Hilbert の弱零点定理（Theorem 2.2）である。

(2) ⇒ (1) : 𝐴 を弱零点定理をみたす可換環とする。

1. 各 𝑎 ∈ 𝐴 ∖ {0} に対して、多項式 𝑎𝑥 − 1 ∈ 𝐴[𝑥] を考えれば、𝐴 が弱零点定理をみたすことから、

ある 𝑏 ∈ 𝐴 が存在して 𝑎𝑏 = 1 となる。 すなわち 𝐴 は体である。

2. 𝑓 ∈ 𝐴[𝑥] が定数でない多項式なら (𝑓) ≠ (1) だから、𝐴 が弱零点定理をみたすことから、ある 𝑎 ∈

𝐴 が存在して 𝑓(𝑎) = 0 となる。 すなわち 𝐴 は代数閉である。

あとは、弱零点定理をみたすという条件が圏論的に書き換えられればよいです。 そのために、多項式系の共

通零点について次の観察を行います。

🔎  Observation 2.5     多項式系の共通零点の “圏論的” 解釈

𝐴 を可換環、𝑓1, …, 𝑓𝑚 ∈ 𝐴[𝑥1, …, 𝑥𝑛] とする。 まず、写像

Φ : 𝖧𝗈𝗆𝖢𝖠𝗅𝗀𝐴
(𝐴[𝑥1, …, 𝑥𝑛], 𝐴) → 𝐴𝑛 ;  𝜙 ↦ (𝜙(𝑥1), …, 𝜙(𝑥𝑛))

が全単射であったことを思い出す。 すると、この対応により、𝐴 代数の準同型

𝐴[𝑥1, …, 𝑥𝑛]/(𝑓1, …, 𝑓𝑚) → 𝐴

と 𝐴 の元の組 (𝑎1, …, 𝑎𝑛) ∈ 𝐴𝑛 で

𝑓1(𝑎1, …, 𝑎𝑛) = ⋯ = 𝑓𝑚(𝑎1, …, 𝑎𝑛) = 0

をみたすものは 1 対 1 に対応する。

𝐴 代数の圏 𝖢𝖠𝗅𝗀𝐴 における compact object の記述を思い出すと、この観察と合わせることで目的の特徴づ

けが得られます。

◾︎  Proposition 2.6     弱零点定理の圏論的解釈

可換環 𝐴 に対して、次の 2 条件は同値である。

(1) 𝐴 は弱零点定理をみたす。

(2) 𝐴 は可換環の圏 𝖢𝖱𝗂𝗇𝗀 の対象として Nullstellensatzian である。
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proof )

1. Observation 2.5 から、(1) は次の条件と同値であることがわかる :

任意の整数 𝑚, 𝑛 ≥ 1 と任意の多項式 𝑓1, …, 𝑓𝑚 ∈ 𝐴[𝑥1, …, 𝑥𝑛] に対し、(𝑓1, …, 𝑓𝑚) ≠ (1) なら、

ある 𝐴 代数の準同型 𝐴[𝑥1, …, 𝑥𝑛]/(𝑓1, …, 𝑓𝑚) → 𝐴 が存在する。

2. 一方、Example 1.5 (4) と以下の Lemma 2.7 を用いて 𝖢𝖱𝗂𝗇𝗀 における Nullstellensatzian object 

の条件を書き換えると、(2) は次の条件と同値であることがわかる :

任意の整数 𝑛 ≥ 1 と任意の有限生成イデアル 𝐼 ⊂ 𝐴[𝑥1, …, 𝑥𝑛] に対し、剰余環 𝐴[𝑥1, …, 𝑥𝑛]/𝐼  が

零環でなければ、ある 𝖢𝖱𝗂𝗇𝗀𝐴/ ≃ 𝖢𝖠𝗅𝗀𝐴 の射 𝐴[𝑥1, …, 𝑥𝑛]/𝐼 → 𝐴 が存在する。

  Lemma 2.7

𝐴 を可換環とする。

(1) 𝖢𝖠𝗅𝗀𝐴 の始対象は 𝐴 自身を 𝐴 代数とみなしたものである。

(2) 𝖢𝖠𝗅𝗀𝐴 の終対象は零環 0 である。

proof ) 始対象、終対象の定義通り確かめればただちに従う。

3. 以上の 1, 2 より、(1) と (2) が同値であることがわかる。

 2.8  Theorem 2.4 と Proposition 2.6 を組み合わせて、Theorem 1.8 の主張を得る。

3 補足

 3.1 圏における “代数閉体対象”  ここまでで、代数閉体が可換環の圏 𝖢𝖱𝗂𝗇𝗀 の Nullstellensatzian 

object として特徴づけられることを見ました。 この特徴付けを踏まえると、𝖢𝖱𝗂𝗇𝗀 以外の圏においても 

Nullstellensatzian object の概念が定義されていたことから、圏 𝖢 における Nullstellensatzian object を

圏 𝖢 における “代数閉体対象” とみなすというアイデアが思い浮かびます。 [BSY22] においてこの概念が導入

された動機はまさにここにあります（Introduction の冒頭を参照）。

 3.2 原論文における文脈  しかし、𝖢𝖱𝗂𝗇𝗀 以外の具体的な圏における Nullstellensatzian object として 

“面白い” 対象が存在するかどうかは非自明な問題です。 例えば、体 𝑘 に対して 𝑘 上のベクトル空間全体のな

す圏 𝖵𝖾𝖼𝗍𝑘 の Nullstellensatzian object は 𝑘 のみであり、さらには Abel 群全体のなす圏 𝖠𝖻 の場合 

Nullstellensatzian object は存在しません。 これらは elementary な考察によりわかります（証明略）。

[BSY22] では、𝑇 (𝑛)-local 𝔼∞-ring という、chromatic homotopy theory に由来する条件をみたすよ

うな 𝔼∞-ring 全体のなす ∞-圏 𝖢𝖠𝗅𝗀(𝖲𝗉𝑇(𝑛)) における Nullstellensatzian object が、代数閉体 𝑘 に対し

て定まる Lubin–Tate spectrum 𝐸(𝑘) で与えられることが示されています（正確な主張は [BSY22, 

Theorem A] を参照）。 Lubin–Tate spectrum は chromatic homotopy theory において重要な役割をもつ

十分に “面白い” 対象です。 [BSY22] では他にも関連する 𝑇 (𝑛)-local 𝔼∞-ring に関する結果が複数示されて

おり、とくに Rognes が 2000 年代に予想した Redshift conjecture が任意の 𝔼∞-ring に対して成り立つこ

との最終的な解決がなされています。
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